Algebra 2: Unit 2 Instructional Focus - Polynomial and Rational Functions

Topic	Instructional Foci
	This topic extends students' prior knowledge of quadratic functions form Algebra 1 to include complex zeros. Students activate their knowledge of solving quadratic equations by inspection, factoring, completing the square, the quadratic formula, numerical methods, and graphical approaches; they strategically choose a technique based on the structure of the equation. They connect the solutions of the equation to key feature of the related quadratic function. Students apply techniques of solving quadratic equations to radical equations and understand why extraneous solutions may arise. Students also identify a need to extend beyond real numbers to complex numbers in order to determine all solutions of quadratic equations. They make connections between the nature of the solutions of a quadratic equation and the graph of the related quadratic function. Students extend the properties of addition, subtraction, and multiplication of real numbers to complex numbers. Honors students also enrich their understanding of complex numbers by looking at a graphical
representation of multiplication by i. Note: Students are not required to divide complex numbers in Algebra 2.	

Topic	Instructional Foci
	In previous topics, students analyzed linear and quadratic polynomials. In this topic, students expand their knowledge of functions to include polynomials whose degree is greater than two. Students apply prior knowledge of key features of functions to polynomials; they extend their understanding to describe end behavior and classify functions as even and odd. Students make connections between zeros of polynomial functions and solutions of polynomial equations. To reveal zeros, students develop additional factoring strategies,
including polynomial division. Note: Instruction does not include synthetic division. Students connect multiplication of polynomial	
expressions with multi-digit multiplication, and division of polynomial expressions with division of natural numbers. Students move	
flexibly among multiple representations of polynomial functions. This topic culminates with students modeling real-world situations	
with polynomial functions. Honors students also apply polynomial identities to describe numerical relationships. They investigate	

Topic	Instructional Foci
	In this topic, students use rational functions to model inverse variation. They analyze the key features of the functions $f(x)=\frac{k}{x}$ and $f(x)=\frac{k}{x^{2}}$ and perform transformations on the associated graphs. Students extend their prior knowledge of polynomial division to rewrite other simple rational functions of the form $\frac{p(x)}{d(x)}$ as $q(x)+\frac{r(x)}{d(x)}$, drawing on their understanding of whole-number division, in order to analyze key features, including horizontal and vertical asymptotes. They solve simple rational equations by multiplying each term by a suitable expression, and they give examples showing how extraneous solutions may arise. Concepts: - Develop and graph a rational function that models inverse variation of the form $y=\frac{k}{x}$ and identify its key features. - Develop and graph a rational function that models inverse variation of the form $y=\frac{k}{x^{2}}$ and identify its key features. - Identify the effect on the graph of a rational function of replacing $f(x)$ by $f(x)+k, k \cdot f(x)$, and $f(x+k)$ for specific values of k. - Rewrite rational expressions of the form ${ }^{a(x)} / b(x)$ as $q(x)+{ }^{r(x)} / b(x)$ to reveal characteristics of the associated function. - Solve simple rational equations in one variable.

